Universität Regensburg

Udo Kruschwitz


Anschrift:
Herr Prof. Dr. Udo Kruschwitz
Universität Regensburg
Fakultät für Informatik und Data Science
Lehrstuhl für Informationswissenschaft
Straße:
Universitätsstr. 31
Ort:
93053 Regensburg
Tel.:
0941 943-3586
Fax:
0941 943-1954

Leistungsprofil:
Praxisrelevante Forschungsgebiete:
  • Search engine technology
  • Interactive search
  • Natural language engineering / text analytics

Praxisrelevante aktuelle Projekte:
  • Ongoing collaboration with Signal AI: https://research.signal- ai.com/team.html
  • Ongoing collaboration with Ceasefire Centre for Civilian rights: https://iraq.ceasefire.org/
  • COURAGE - A Social Media Companion Safeguarding and Educating Students https://www.upf.edu/web/courage



Publikationen:
  • Kruschwitz & Hull (2017) "Searching the Enterprise", Foundations and Trends in Information Retrieval. https://www.nowpublishers.com/article/Details/INR-053
  • Zimmerman, Kruschwitz, & Fox (2018) "Improving hate speech detection with deep learning ensembles", LREC 2018. https://www.aclweb.org/anthology/L18-1404.pdf
  • Alhelbawy, Lattimer, Kruschwitz, Fox, & Poesio (2020) "An NLP-powered human rights monitoring platform". Expert Systems with Applications: https://www.sciencedirect.com/science/article/abs/pii/S0957417420301901?via%3Dihub
  • M Poesio, J Chamberlain, U Kruschwitz, L Robaldo, L Ducceschi (2013) "Phrase detectives: Utilizing collective intelligence for internet-scale language resource creation", ACM TiiS. https://dl.acm.org/doi/abs/10.1145/2448116.2448119
  • Kruschwitz (2005) "Intelligent document retrieval: exploiting markup structure". Springer. https://link.springer.com/book/10.1007/1-4020-3768-6
  • Elsholz, Chamberlain & Kruschwitz (2019) "Exploring Language Style in Chatbots to Increase Perceived Product Value and User Engagement". Proceedings of ACM CHIIR 2019. https://dl.acm.org/doi/abs/10.1145/3295750.3298956
  • Paun, Carpenter, Chamberlain, Hovy, Kruschwitz & Poesio (2018) "Comparing Bayesian models of annotation". Transactions of the Association for Computational Linguistics. https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00040/43448/Comparing-Bayesian-Models-of-Annotation


Kooperationsangebot für die Wirtschaft / Praxis:
Bevorzugte Form der Kooperation:
  • FuE
  • Bachelor-/Master-/Diplomarbeit
  • Doktorarbeit




Zurück zur Liste
Falls dies ihr Profil ist, können Sie es hier nach dem Login bearbeiten.